


On Picture is Worth ... |
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Much of what happens at LBNL is “taking pictures”
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On Picture is Worth ... |

We worry a lot about getting just the right lighting ...
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On Picture is Worth ... |

And of course about the subject ...
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On Picture is Worth ... |

But less often “the camera” ...
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One Picture is Worth ...
Solid State Imaging Detectors

Many objects imaged with
visible light
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Desirable

= X/d: )

¢ X: o (or N
¢ Frame rate: «©

¢ Dynamic range: «

¢ Non-linearity: 0

¢ Cost: 0
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Solid State Imager |

N+ contact

S s
N v
N ’
N ’
N s
N ’
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Depletion region

Continuity equation

Generally some sort of diode array 5
. . _ . . n
(Title is general — talk is about Si) _ ,unnVE n Dnvzn n Gn _ Rn

ot

Drift: v=pE

Diffusion: D = k—Tu
g
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Also important |

— MTF: fft(PSF)

1.0

Point spread function — 0.8 - \
determines spatial resolution < 0.6

2 0.4 \

0.2

0.0

— m P. Denes July '06 I3




Oh, this also helps

Somewhere between the “sensor” and there needs to be some electronics
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Topology

Sensor

Monolithic
sensor+readout
on same substrate

2D segmented Si attached 2D segmented Si attached
to 2D segmented Si to 1D segmented Si
or other electronics

2D segmented Si
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Start with small, but useful, part of spectrum |

Consumer imaging is a many $B/year industry '
(driven, of course, by such critical needs as —

149 42, &5
S 48.5 ~—

13

O Memory

B Microporcessor
W Logic

B Analog

B Discretes

O Opto

B Sensor

1.9

54.7

2005 SIA breakdown

S7.7 ($B)

What can we learn? What can we do better?
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Integrated Circuit Elements |

MOS Transistor pn Diode
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Conventional Semiconductor Processing |

¢ Passive Pixel Sensor
* Proposed 1968
* No in-pixel reset

* Poor performance due to capacitive
load (nothing buffers the
photodiode)



Active Pixel Sensor |

RESET

SELECT
¢ Active Pixel Sensor
* Also proposed 1968
¢ Many ways to make

_ Fill factor =  — pr—
the photodiode D

W P. Denes July ‘06 I3

Pixel Photosensitive region




How It Works

RESET RESET B
by
Q‘ VI 4 Vi T
| V2 -
SELECT1
SELECT1
SELECT? [
ouT
22. . L
—_\_‘f‘?
SELECT2
ouT
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Add Microlens and Color Filterl

W P. Denes July '06 I3

Microlens array
recovers some of the
fill factor

Opaque walls
between cells
reduces cross-talk

Color pattern
matched to algorithm



Integrated Circuit Elements |

s |

=i

t
0).4 XD

C - C. - €sio, C _
- ) oX — , ' ~MDEP — _
1 + 1 tox Xp

COX C DEP

MOS Capacitor
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Accumulate Charge |

V_ V, V_

m P. Denes July '06 I3



Accumulate and Transfer Charge |

V.V, V.,
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Conventional 3-Phase CCD |

Out
0, * * 1 AV
) T T RST Vpp —

* Noiseless, ~lossless charge transfer
* High gain charge-to-voltage conversion AV = ¢/C.,
¢ Output amplifier (source follower, or ...) on-chip
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Scientific CCDs |

¢ CCD invented in 1969 by Boyle

| and Smith (Bell Labs) as

‘.:“‘1 | alternative to magnetic bubble
memory storage

¢ LST (“Large Space Telescope” —
later Hubble) 1965 — how to
Image?
¢+ Film was obvious choice, but -
It would “cloud” due to radiation
damage in space

Changing the film in the camera
not so trivial

¢ 1972 CCD proposed

Kl s - I.I:&E:am* IPMgrmh

Dumbbell nebula - LBNL CCD
Blue: H-a at 656 nm

B4

1.02 mm
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Many ways to do this |

Pixel 1 Pixel 2 Pixel 1 Pixel 2 Pixel 1 Pixel 2

D4 *— *—
(P3 - —— (P3 - O—

i — B (e — !

?1 I | E | P11 ! (Plu I T T L

Q Q Q.

Q.

Implant —
modifies potential
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Horizontal clocks

Full frame

it m P. Denes July '06 I3

Vertical clocks

Several architectures |

v Vertical clocks

Horizontal clocks _
Horizontal clocks

Frame transfer Interline
Rapid shift from image

to storage

Slower readout of

storage during integration

Vertical clocks



Very Large Format CCDs (and CMOS imagers)

¢ Fairchild Wafer Scale Full Frame CCD
¢ 9216 x 9216 x 8.75 um pixel
¢ 80.64 x 80.64 mn¥ size CCD
¢ Eight 3-stage output amplifiers
¢ Readout noise < 30e- @ Z2/fps

¢ Cypress CYIHDS9000
¢ 3710 x 2434 x 6.4 um pixel
¢ 23.3x15.5 mn¥ size APS
¢ 0.13 um imaging CMOS process

¢ Canon 16.7 MPix

s 36 x 24 mn¥ 4992 x 3328
¢ Kodak 39 MPix

v 36 x 48 mn¥



APS vs CCD |

¢ APS — moves a voltage down
the column

¢ CDS either in pixel or “digital”
¢ Addressable readout

Backside illuminated devices not
yet really practical

¢ Support circuitry (clock drivers,
digitizers) required

CCD — moves a charge down
the column

“Intrinsic” CDS

¢ Sequential readout

Backside illuminated devices
practical (thick ones, too)

Can be monolithic — one chip

Otherwise roughly the same. In principle, equivalent dynamic range.
In principle, same leakage current (but not in practice)
Monolithic device much more profitable — prevalence in market
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The Competition - Film |

N O AgX_+gelatin 0 T O L0 00T 00
(emulsion) N OO o~ o

-5 I 1
N 18sm3IBI kU 248E3 SSZB-2R STIT 29

Electron mi[:rugn;ph of tabular
grain emulsion

silver halide emulsion on tri-acetate backing

sub-micron to few micron grains
CMOS/CCD ~7 —10 um

; ".‘:‘;]
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How it works |

Incident light
0 T {0 R0 R O 0 59O 0~ O T O 0
oo <>€j d o] BT PTG T
photote|ectron.s___,egﬁ\;é}{ Ag* larger grains have larger cross
sites to Ag° _ at the same section, so they are more likely
time, thermal fluctuations to get hit. Thus, larger grains
tend to “erase” the image. are “faster” but “grainier”

Generally, a few photons are
required to leave a “latent”
Image on a grain
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How it works |

0 W00 D™ T O w

oo m o @O & ¥ e
“develop” the image so that “fix” the image — removing
the sensitized AgX is the unexposed AgX
reduced to black metallic
silver

The chemistry and physics of photographic film is not trivial
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Historical Footnote |

George Eastman Hannibal Goodman

"You press the button, we do the rest" Minister at the House of Prayer in
Newark, New Jersey
(files for patent in 1887 — granted 1898)

The devil is in the details: “photographic plates” (emulsion on glass) - cellulose
nitrate for first motion pictures (tends to burn — don’t yell “fire” in a theater - “safety
film” (Kodak 1911) — not really perfected until 1948 (triacetate)
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Silicon

Who Wins? |

Regular array of pixels
pitch p

Film

% o

5'0
Random collection of 60
different grain sizes OOO 0 %@

For now film grains smaller than silicon plxels

Analog

m P. Denes July '06 I3
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Processing
Linearity

Resolution
Dynamic range
Integration

time
¢ MTF

¢ MTF x S/N

\"] W P. Denes July '06 I3

Pros and Cons |

Silicon

Electronic
“Ideal”’ n(e”) = QE x n(y)

Larger pixels

CCDs — 16 bits
Ultra-high quality
process — minutes; opto

process — seconds;
normal process — ms

Regular pattern —
aliasing
Better

Film

Chemical

non-linear — n y required
to flip a grain; thermal
fluctuations vs grain size

Smaller grains
Locally, ~4 bits

“long” (also thermally
limited)

Given by smallest grains,
no aliasing

Worse



Marketplace has decided |

Camera Sales
Million units

B Analog cameras EMDigital cameras

30.0
25.0
20.0
15.0
10.0

5.0

0.0

1094 1995 1996 1997 1098 1999 2000 2001 2002 2003 2004 2005
(est.) (proj.)

Note: Excludes single-use cameras
Source: PMA Marketing Rasearch

m P. Denes July '06 19 Photo Marketing Association International 2005 Outlook



Technical Drive for Industryl

1E+12 1E+9
o
_ (7))
& 4
% o
c_leOE+9 . + 10E+6 &
2 [
css <
= [z
< =
< 10E+9 100E+32
%
¢ =
q n

1E+9 ‘ ‘ ‘ ‘ ‘ 1E+3

1975 1980 1985 1990 1995 2000 2005
Year
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Exponential Growth Achieved by Feature Size Shrinkage I

CMOS driven by

: .,
s W L constant field scaling
Digital: W = cL \/

—V /x
Speed: g,,/C tox = toy /x
Size: WL

Esio, W (V Vv )

On ~ L

LAy Iy B ey

C ~ €sio, WL
tox R ’ -
p substrate e

Doping - N,— k N,

_H :4_

Channel Length L —»L /x

—>
=217 [/ s [ *Not the only way, but life is digital (evidently)




Why constant field scaling? |

Area

Esio, W

t T (VDD _Vt )
OX

On ~

E..
C __ 7Si0, WL

tOX

Speed —g,,,/C
Power ~CVp?/speed
Power density ~Power/Area

| m P. Denes July ‘06 I3

Scale geom.
W, L, toy v

1/x?

Scale voltages too
Vpp and V; also vk

1/x?




What This Means |

Feature Size 2000 |[1200 | 800 | 500 | 350 | 250 | 130 65 35 20

[nm]
Minimum

ITI

N M O S - - .T. .T. -T- als + ° Q O
Vpp (V) 5.0 5.0 | 5.0 3.3 |33 |25 |13 |12 1.1 | 0.8
U5y (A) 350 | 250 180 | 120 | 100 | 70 30 13 9 6
Oxide field 1.4 2.0 28| 28| 3.3| 3.6 43 | 9.2 12 13
(108 V/cm)
Production 1980 (1983 |1988 | 1991|1995 | 1997 | 2001 | 2003 | 2007 | 2012

How long this can go on is a good topic for another talk ...
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Why not combine CMOS and CCD? |

a dream process? CCD pixel region

B C\10S amplifiers/digitizers

CCDs have certain specialized requirements

| W P. Denes July ‘06 I3



Surface vs buried channel CCD |

¢ MOS capacitor Potential ‘

¢ Potential
maximum at Si —
SIO, interface
¢ CTE<1daueto
trapping at
Interface

¢ Ppotential |
maximum not at Si Potential
— SiO, interface

¢ CTE typically >
99.9999%

— m P. Denes July '06 I3



Why not combine CMOS and CCD? |

a dream process? CCD pixel region

B CcMos amplifiers/digitizers

CCDs have certain specialized requirements
e buried channel
o triple poly (for 3-phase CCDs)

e deep implants, thick low doping regions, thick gate oxides
(high voltages) all go in the opposite direction of shrinking
CMOS

\'] W P. Denes July '06 I3



CCD vs APS |

¢ CCD will survive (genuinely better for certain applications —
see below), and will continue to be the best solutions for
max(area, pixels, dynamic range, speed)

¢ APS will (is) dominating consumer market
¢ APS can be a single chip solution

¢+ CCD needs clock drivers, digitizers, digital logic so APS is ultimately
cheaper for mass-market applications

¢ One could combine CCD and CMOS, but (so far) there’s no
commercial push.

¢ One area where CCDs offer an advantage is:

\"] W P. Denes July '06 I3



Frontside/Backside lllumination

RERRIRL

el

TEPI

W pm

ore (L Tk

Fill factor < 1 i
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g oC (1_ e_TEPI /AA )

. el

TEPI

ssssssssiss

Fill factor = 1



Backside lllumination |

el —

T T N N R R R N

PROPOSAL:
Make a thick CCD on a high-resistivity n-iype substrate,
operate fully depleted with rear illumination.

buried
p channel

Transparent
rear window

3-phase
CCD structure

Poly pate

electrodes

T

— E :1-'%" ;

-

-
(10 kL-cm)
photo-

sensitive
volume

<. (300um)

S

335

e
=] m P. Denes July '06 I3

This should be depleted — generally thin with
conventional processes

— add a layer which can be used as an electrode

Advantages:

1} Conventional MOS processes
with no thinning
== "inexpensive"

2) Full quantum efficiency
to = 1 um == no fringing

3) Good blue response with
suitably designed rear contact

4) No field-free regions for
charge diffusion, good PSF

Disadvantages:

1) Enhanced sensitivity to
radiation (x-rays, cosmic
rays, radioactive decay)

2} More volume for dark

current generation
3) Dislocation generation

LBL CCD - S. Holland et al.



CCDs are wonderful |

But they are slow

¢ Parallel exposure
¢ Serial readout

¢ Vertical clock
¢ Horizontal clock
External, high resolution ADC

§=; HHH
$$*§***§§

<

| m P. Denes July ‘06 I3



Easy |

Now it gets more difficult
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Increase ADC speed

/2 B\/ H port

top+bottom readout

Ny, Ny = # H, V pixels
By, By = H, V binning
Ty, Ty = H, V shift time
Nport = # pOrts

Tcony = total conversion
time mcludlng reset,
summing well,

I T A
— - HH HHE -

P. Denes July '06 I3



Limitations |

VDD

M Out
He, Hep, He, OSW OTG ﬂs T

LI

FD

¢ Jktc Noise contribution from M, (reset switch) removed by CDS
(correlated double sampling — measure Vi and V, + V)

* Noise contributions from M (source follower) T ~ Vrate
¢ Ultimately limitations in charge transfer

\'] W P. Denes July '06 I3
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Voo Add more portsl
Vs }RST

OTG OSW Ho, Hp, He,

“Il"““ll““”““ ¢ Reset and output

T HE T transistors need
D room
¢ Want to minimize C.

I
M f
-
it
J #

¢ Need space for the
output stage!
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One way to gain space |

18

— e ] 1
= — ==~ 2
e e 3
PEEEEs e —
PESEEEE I W w—
"i‘_&"‘"-,"u]'“"' — T\ A A
<V I | [ 2 1";\‘ \\1\\ 1\.\ - L -
= EE N s T Y ML w—
S T T T =\ w—
S oo ——\5
= { 42|41
ol 1925
) 3
T s 1
;n PARALLEL 2{—§
: CLOCKS
H
Wage e Ex 10 DH
3 1] 3 [{
SW o) =
O0G——
RD

Ficure 4 Denirtion of the reeion avamumd the autrant rivenrt

MIT Lincoln Labs multi-port CCD
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For example |

Fairchild 456

512 x 512 x 8.7 um pixel (19% FF)
Interline transfer / 32 ports

1000 fps = 250 MPix/s

® & o o

¢ On-chip current sources for 3-stage
output = 2.5 Watts

At some point, adding more ADC ports becomes a connection
nightmare - integrated circuit solution needed.

=] W P. Denes July '06 I3



Fully column-parallel |

1 ADC/column
Bump bonding required
No source-follower

DR ¢ Example — developments for
algglajala|alaalalala ILC Vertex Detector

g <<|<|<|<|<|g<|<|<| <

¢ 50 MHz column readout

¢ 4-5 bits dynamic range

Custom IC

LCFI
(= i

RAL et al.

it W P. Denes July '06 I3
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e

(Almost) Column Parallel CCDsl

— 41 F 1 -

— 4 4 & -

—- 11 F& -

—- 11 F& -

O
Qa
<

P.

ADC | = s S S R RN T RS Ac

aoc (SRR T SRR S I T R R T SR ADC.

=< &5 s 1 - D

Denes July 06 I°

Problem

CCDs are the ubiquitous
Imagers for synchrotron
radiation applications, but
IN many cases T, t< <Tgq

Solution chosen

¢ Speed increased by Nooqrs

* N, /arge enough to
minimize the number of
ADCs needed

* N, small enough to ensure
fast readout

¢ Wire bonding still possible



Prototype — 480 x 480 x 30 um pixels |

¢ Constant area
taper
¢ 10 pixels/SR
¢ 300 um output
pitch
Metal strapped
¢ Thick “LBL CCD”

poenesauy0s | DRD




fCRIC — CMOS 0.25 pm |

ﬁaaaaaaﬁf”"

rL'HHHHHHHHH

16xADC Digital Control and I/F
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All Mounted on a 6” Si Substratel

“Silicon is a good CTE match to silicon”

fCRICs

m P. Denes July '06 I3 '



Fast CCD Camera Specifications |

Detection GdO,S:Tb phosphor — or — direct
CCD Well depth >10% e~ (30 um pixel)

Nominal rate 400 fps (480 x 480, “zero integration”)
Sensitivity at nominal rate 3.5 uV/e-

FS at nominal rate 128k e~

Noise at nominal rate <10 e-

Conversion gain fixed by CCD and integration time. Larger
FS possible with shorter integration time.

\"] W P. Denes July '06 I3



Absorption in Si |

WAVELENGTH, A

“““““““ u ...l.l....
10° 10° 10° 10 10 A
L mrr 1 T T LR L L FRLLLALELEL Y 2B -~
ln? : 1nE:| Lk B B R LR LI L —Ij LA =
Y - ABSORPTION (1/e) DEPTH IN SILICON 1

105_— -j

10° : :
sl Ew“; 3
% 105 310‘3; _i
z 10° 102 E
E ol v 10— .
o 03 0 2000 4000 6000 8000 10,000
o 1 WAVELENGTH, A
=

102 Ignoring reflection ...

i A Visible light or x-rays:

107 10! 102 10° 10 .
PHOTON ENERGY, eV 4-5 orders of magnitude

Bandgap of Si at 300K = 1.1 eV
— pure Si transparent for A > 1.1 pym

W P. Denes July '06 I3
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Transmission

Thick Silicon for x-rays |

100% S———
90% P ——
/ /
80% - / / / /
70% / / -
/
60% | / — { —>
/
a— / / PR
/ —— 200 um
e / / / / —300 um | F 1
30% I" 600 um - . g
| / / / — =20 um AN
20% 5 /
10% | l" /
Ly
0% - \ | |
0 5000 10000 15000 20000 25000 30000
—:I iﬁ P. Denes July '06 I3 EY [EV]



Back-illumination preferred |

100%

90%
80%

S 70%

°

= 60%

S ~

: Ao E ]

C ann—

S g00 | oMM S

s S E
20% | —1,000 nm | A
10% . =—10,000 nm /// /

10 100 1000 10000
E, [eV]
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1st x-ray images in LBNL CCD |

3,512 x 3,512 x 10.5um pixel CCD s SPECIUM Of RoW 1200 _
200 um thick - |
Cu anode, 140K, 70 kHz ‘

it

5 um slit in semi-transparent

stainless steel

e 4 | % P. Denes July '06 I3




X-rays in CCDs |

50

Intrinsic resolution in S/

45

N
o
I

/

FWHM [eV]

\\

w
o

25 /

400 500 600 700 800 900 1000

¢ Excellent spectroscopic resolution 5 (o]
¢ But only if not piled-up — low rate or fast readout

* N, yax = Well Depth / (E, /3.6 eV)
v <1000
v+ = 9-10 bit ADC OK

¢ Would really profit from high-speed readout as S/N is so high
_:1 gﬁ P. Denes July '06 I3




650 um thick CCD |

>>Fe K, and K;. Resolution ~ 126 eV at 5.6 keV

120
100
80—

60—

Pixel Count

20

ol ..

1 | | | | | | | 1 | | 1 | I.

IIIIII

0

=] W P. Denes July '06 I3

1000 2000 3000 4000
Energy [ADU]



LBL CCD

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

r @
2// ?/A %// 2// %A %

%

pn-CCD (MPI, ...)
(Gatti, Rehak, Struder ...)

T T o o T T T T i i i T T T
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Electrons |

Phosphor

/

CCD

Fiber-optic
Coupling




EM Detector |

The Problem: The Solution:

300 keV e~

4 pm SiO,
2 um Al

2 um SiO,
8 pm
active Si

Inactive Si

semi-infinite slab of Si

300 keV, 1 mm

50 um total

R [um] — E [keV]

y 40 um >

it m P. Denes July '06 I3



Optical Active Pixel |

I’g"

I

-
\
\
\
\

Si0,

SRR

' — : S |

T T T T T N N N N R R R N B N S %

M% ... Il Factor = Active / Total area




EM Active Pixel

)
o)

ol et e

Si

Fill Factor = 100%

L1 W P. Denes July '06 I3
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Radial Distribution [300 keV] |

1.E+00
1.E-01 - X\ od Active
\\\ / —
1.E-02 \ —s8umsSi — _
o\ ) ) Active
- \\\ —8um Si + SiO2/Al
§' 1.E-03 \\\ +Si back —
Q
v/ Active
1.E-04 -
1.E-05 -
1.E-06 ‘
0 10 20 30 40 50

Radius [pum]

50 um Si thickness



Image of Beam Stop (200 keV) |

PSF visibly < 10 um

CMOS Im r : "“I"l""“l;l |
- ( o n'IlC'l

10 um Pixels
20 pum Pixels

[ .mu.umwmmw.tm.l.u i

/y"u

Noise limited — no cooling

Test Chip in AMS C350

a2 i@ N DQYOGI— Beam stop on 200CX Microscope at NCEM




Monolithic Imagers for EM |

Signal:
25 mV/e-
AW IR ¢ Single electron sensitivity
_ (SNR 8.3 here, will improve with
Noise cooling)
Tl

¢ High-speed readout (dynamics)

Next step: 3k x 3k high-sensitivity (bio) chip

\'] W P. Denes July '06 I3



Hybrid Pixel Detectors |

o QT et
DDDQDDDDDDDDD 1] QDDDDDDDDDDDDDDDDDDDDD [:I

il ———— ER
.q:‘ d:r‘\ i mlm“.ﬂ- ; S e !u r {

= _'u

it
=l @ﬁﬁﬁ;ﬁ;ﬁtﬁﬁﬁ@ﬁﬁiézii _EEEEJEFF%%*W‘F**%
JUDDDDDDDPEDDDDDDDDDD O00000000000000000000C)

Advantage over monolithic detectors: much more sophisticated
electronics per pixel

m P. Denes July '06 I3




e.g. ATLAS Pixel Detectorl

100 mm wafer with 3 Si sensors

_‘-".'i"li.'lll

it

;:. R P /
B Readout

A “module” is 1 sensor with
2x8 bump-bonded chips

=] W P. Denes July '06 I3




© and ® of Hybrid Pixels |

UU U U U U U U U U U U U

-

hEEEEEE)

¢ Interconnect — generally implies
relatively large pixels

¢ Large pixels can have much
more “intelligence”
¢ measure per event (e.g. E, t) :
¢ complex functions (e.g. : | =
temporal autocorrelation)
* spectroscopy
¢ Large pixels make large pixel-
count detectors challenging (c.f. : — =
ATLAS pixel detector) =

|
|
‘i i‘ll|'

|
i

hEEEEEE)

!|'|:'J||-

gl

o

| |

|I|

Il

M!F

:ll'||
P
BN

=  —
= '1—?___?_—::—;——§ .z..,._.
== ——— e e
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Another kind of Hybrid Pixel |

® 6 6 6 6 6 0 60 0 0 O MCP

Readout
chip or
CCD (esp.
LBL CCD)

MCP — large electron multiplication gain

— W P. Denes July '06 I3




b
LA
o

2

150

g
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Monolithic Hybrid Detectors? |

Monolithic
sensor+readout
How to make on same substrate
——this
look like
this? —

Bump-bonding works, but is “R&D” for pitch < ~200 pum
and is best done “wafer scale”
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(Bulk) MOS Transistorl

Saturation — Vg > V,,Vp > V-V,
Vg > V;

region

T
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Silicon-On-Insulator |

= Cox

CDEPL

I CBOX
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Advantages of SOI |

¢ Reduces substrate coupling
+ higher speeds
+ Jower power

* Improves radiation hardness
¢ no latch-up through substrate
¢ complete di-electric isolation possible (with trench isolation)

m P. Denes July '06 I3

For lowest power, want a high-resistivity substrate



“Artisanal” SOI Pixel |

_UN .
-:"z:fs%%% < SOl Imager - Main Concept
Detector - handle wafer Electronics - device layer
= High resistive sLow resistive

= 300 um thick

w \=
transistor

LN» pixel

metallization

«1.5 pm thick
metal 2 _

-/-

< _
N\e—transistor
NMOS

J.Marczewski European project SUCIMA 3
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Saved by the Watch? |

Fully-depleted Type SOI Device Enabling
an Ultra Low-power Solar Radio

¢ Commercial SOI on high-
resistivity silicon
(without contact)
0.15 um CMOS

Dream process?
¢+  Almost — see next page

¢ KEK HEP group working on SOI
pixels for particle tracking

m P. Denes July '06 I3
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Modified Version of Oki 0.15 pum FD-SOI |

Electronics contact p-n junction

TOP Si
~50nm ]

==
BOX 150um
(Buried Oxide) Sensor (High Resistivity) )
200nm % (Hig =T

L = L] -
AL(20004) pixel pixel

¢ 3 extra masks needed: (p+ and n+ implants and contact)

¢ Metal back-side contact [m=———mm—mmmm—mm——-
_ _ FD-SOI: this is the fully-depleted part
¢ “quasi commercial”
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Caveat emptor |

Experience shows x ~y~z

Technology needed
— Commercial tech

> Budget




Many Interesting Challenges — to be solved |

* B Systems Expertise
Microsystems Lab Unique IC skills

+ materials development (life after Si?)
+

+ (most important) user base

Then: “You push the button, we do the rest”

| Now: “VWVe do the rest, you push the button”
ﬁﬁ P. Denes July '06 I3
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