

Light Fantastic: The Science and Instrumentation of the ALS

Howard Padmore

Outline

Synchrotron radiation

- what is it
- historical development
- how its produced in the ALS
- how we monochromatize and focus x-rays

Three example applications

- protein crystallography
- soft x-ray bio-imaging
- angle resolved photoelectron spectroscopy

Detectors

- what is being developed now
- what we are hoping to develop
- what the international competition is doing
- what technologies and skills do we need to be competitive

ALS Radiation is Produced by Bend Magnets and Undulators

How Bright Is the Advanced Light Source?

ALS

An X-ray lab – circa 1895

Wilhelm Conrad Roentgen 1845-1923

First visual observation of synchrotron light at the General Electric 70 MeV synchrotron in 1947

SR in the early days: Tantalus at Univ. Wisconsin

European Synchrotron Radiation Facility

STONEHENGE Remains of the first synchrotron light source

Beamlines at the ALS 2005

ALS: From the Booster to the Beamlines

Bunchers and Acceleration Section

Linac to Booster

Transfer line

Injection kicker

Booster Injection

Booster Synchrotron

Storage Ring

RF Cavities

- Restores synchrotron radiation losses
- Provides longitudinal bunching

ALS Radiation is Produced by Bend Magnets and Undulators

jc.fs/bend&und/12-95

Normal conducting bending magnet: E < 16 keV

Superconducting bending magnets: E < 60 keV

Three of the existing thirty six **1.3 Telsa** dipoles have been replaced with three **5 Tesla** superconducting dipoles

The First Permanent Magnet Undulator

PERMANENT MAGNET UNDULATOR CONCEPTUAL DRAWING

- invented by Klaus Halbach
- built at LBL
- installed at SSRL in 1980

Undulators at the ALS

ALS U50 (1993) Hybrid permanent magnet technology

ALS EPU50 (1998)

Pure permanent magnet technology, elliptically polarizing capability

Undulators at the ALS

30 mm period, 1.5T wiggler / undulator (2005)

- in-vacuum magnets
- commercial device

On-Axis Brightness of SR Sources

New devices:

- in-vacuum permanent magnet
- in-vacuum cryo permanent magnet
- superconducting

Slicing the electron beam for ultrashort pulses

ALS Beamlines

Protein Crystallography Beamline Layout

Protein Crystallography Beamline Layout

Protein Crystallography Parabolic Pre-mirrors

- parabolic collimating mirrors bent from flats
- cooled
- figure perfection ~ 1 microradian
- surface roughness ~ 0.5 nm rms

Protein Crystallography Crystal Monochromator

- energy changes by rotation of parallel crystals
- constant exit height by translation of 2nd crystal
- water-cooled crystals
- sub-microradian angular tolerances

S[111] crystals

Protein Crystallography M2 Toroidal Mirror

- sagittal cylinder bend into a toroidal shape (R ~ 2 km, rho ~ 10 cm)

- figure testing in progress on LTP

Protein Crystallography HHMI end station

