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Neutral Particle Detection is Essential to both Particle
Astrophysics and Nuclear Security

Dark Matter and Neutrino Experiments require exquisite sensitivity
for finding neutral particles (WIMPS, neutrinos)

The need to control of Nuclear Materials drives us to create detectors for
measuring the penetrating radiations from fissile and radioactive decay
(gammas, neutrons, antineutrinos)

A fission chain
initiated by 240Pu
(antineutrinos not shown)
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The Nuclear Security Problem Writ Large

Find all the “Special Nuclear Material” (read: Highly Enriched Uranium and
Plutonium) in the world, and track it or eliminate it as best we can

• International Atomic Energy Agency IAEA Safeguards: Verify that civil material is not
transferred to weapons programs – part of the Nuclear Nonproliferation Treaty
• Arms/materials reductions – drawdown of nuclear weapons and materials in weapons
states – e.g. Plutonium Disposition Agreements, Fissile Material Cutoff Treaty, Strategic
Offensive Reductions Treaty
• National Technical Means – Detection capabilities deployed by individual nations

Approximate Equivalent in
Number of Nuclear Weapons

Where is itApproximate
Worldwide Inventories
(source - isis.org)

60,000
( @ 25 kg HEU per weapon)

mostly in military
stockpiles -

1,900,000 kg of HEU

230,000
( @ 8 kg Pu per weapon)

Most in civil spent
fuel, several
hundred tons of
separated Pu in
global civil and
military stockpiles

1,830,000 kg of Pu
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Our Group works at the intersection between Nuclear
Security and Particle Astrophysics

Light Gas
Time Projection Chambers

Antineutrino Monitoring
of Reactor Cores

Doped Water Detectors

Superconducting Calorimetric Gamma and Neutron
Spectrometers
Stefan Friedrich,

LLNL ADG

Bob Svoboda,
LLNL/UC Davis

Hank Sobel/ Mark Vagins UCI
Adam Bernstein/Steve Dazeley LLNL

Adam Bernstein/Steve Dazeley,
LLNL ADG

Nathaniel Bowden, SNL

Mike Heffner, Celeste Winant, Adam Bernstein LLNL
Leslie Rosenberg, UW – Norm Madden – at large



LLNL

Neutron Time Projection Chambers May Be Able To
Locate Plutonium Passively In The Field

Pu has a high rate of MeV-scale neutrons - ~60,000 per kg per second

Hydrogen, 3He, and Alkane gas (butane, methane..) based TPCs should all have 5%-20%
intrinsic efficiency for >1 MeV neutron recoils at pressures from 1 to 10 atm

In Principle: Location of 1 kg Pu within a 20 degree cone in 1 minute at tens of meters
standoff with a cubic meter detector

The Research Question: Can we make TPCs a fieldable, useful device for
detecting plutonium ?
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Directional Neutron Detection

n p or α or 3He

n

TPC Gas and
neutron target
H or 4He or 3He

n
p

3H

A fairly old principle (scattering on H, 3He reaction)
A fairly new detector technology (TPC)
Neutron Direction and Energy are measured in a TPC

Thermal neutron and gamma backgrounds are low; fast neutrons removed
by directionality

Dope with CS2
for large volume
(ion drift)

elastic scattering

3He reaction
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Cross Sections
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Elastic Scattering and the Efficiency for Making Tracks

We convolve the proton cross section with the fission neutron spectrum...
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1 MeV neutron: Scattering length: 4m [10 atm]
Detection efficiency [10 atm]: 20% [1 m column]

Threshold Energy

1/3 of scatters of fission neutrons have proton recoils
greater than 1MeV
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Pointing Resolution for Elastic Scattering
A few events suffice to give useful pointing capability
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The LLNL nTPC

FY06-07 research goals

Measure pointing accuracy
with a working prototype

Evaluate trade-offs among
different gas targets

Evaluate background rejection

Low energy cut-off = ?

Study readout
simplifications and other issues
related to deployment
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The prototype TPC pressure vessel

316 Stainless
18” diameter
20” long
10 bar operating

pressure
Hydrogen compatible
~1200 lb weight
Made from standard

pressure flanges
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Readout Planes

crossed anode wire and cathode
strip readout – low multiplicity

Cathode strips:
pcb manufacture
4.0 mm pitch
3.8 mm width
64 total

Anode Wires:
20 µm 316 stainless
128 total
2mm pitch
6mm from strips

Ground Grid:
75 µm 316 stainless
1mm pitch
6mm from Anode
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Real Neutron Data from our TPC

Direction of neutron (degrees)

Direction of neutrons

TPC

neutron signal

background
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Antineutrino Detectors Address The Nuclear Security Problem
“Upstream”

Reactor monitoring with antineutrinos touches on only
one element in a long and complicated fuel cycle
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The IAEA Monitors Fissile Material Inventories in Civil Nuclear
Cycles

(1-1.5 years) (months) (forever)

1. Check Input and
Output

Declarations
2. Verify with Item

Accountancy
3.Containment and

Surveillance

1 ‘Gross Defect’
Detection

2 Continue Item
Accountancy

3. Containment and
Surveillance

1 Check Declarations
2 Verify with Bulk

Accountancy:

(months to years)

Operators Report Fuel Burnup and Power History
No Direct Pu Inventory Measurement is Made Unless and Until Fuel is Reprocessed
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Antineutrino Detectors Can Provide an Independent Estimate
of the Amount of Plutonium and Uranium in Reactor Cores

1. Directly track fissile content to ~50 kg precision on Pu, as it is produced
2. Measure thermal power to 1-3%, constraining fissile content
3. Operate continuously, non-intrusively, and remotely
4. Self-calibrated, unattended, few channels, low cost materials, operable for

months to years with rare maintenance

• Reactor antineutrinos first detected by Reines and Cowan in 1956

• Russian group accomplished steps 1-2 at Rovno in the late 1980s

• Our LLNL/SNL collaboration has demonstrated steps 1-4

• France, Brazil are now proposing similar deployments
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The Properties of Antineutrinos and the Maturity of Antineutrino
Detectors Allow us to Monitor Reactors

Rate and energy spectrum are sensitive to the fissile content of the core
• 200-300 kg of new plutonium is generated in a typical cycle

• Real data and detailed reactor simulations show a reduction in the
antineutrino rate of about 12% through a 600 day cycle - caused by Pu
ingrowth and U fission

Rates near reactors are high
• 0.64 ton detector, 25 m from reactor core
• Thermal power = 3.46 GW
• 4000 events/day/0.64 ton with a 100% efficient detector
• Our prototype is about 10% efficient and counts 400 events per day
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Fission Rates Vary with Time and Isotope, Antineutrino Interaction
Probability Varies with Isotope

Relative Fission Rates Vary in Time
Rate of
Antineutrinos/Fission
Varies With Isotope

Days into Cycle
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The Number of Antineutrinos is Approximately
Proportional to Thermal Power Up To a Correction that
Depends on the U/Pu Ratio
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The Simplest Implementation – Monitor Relative
Antineutrino Count Rate Within and Across Cycles

Last 300 days of cycle 1 First 300 days of cycle 2

Reactor shutdown

Predicted antineutrino rate
from ORIGEN simulation
(idealized core, 100% thermal power)

1500 kg increase in 235U and
300 kg reduction in Pu content after refuel
causes a 12% change in antineutrino rate
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An Experimental Test at a Reactor Site

20 meter overburden25 meters standoff from core

San Onofre Nuclear Generating Station
Unit II – 3.46 GWt
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Cutaway Diagram of the LLNL/Sandia Antineutrino Detector

Currently operational:
4 cells with 640 kg of scintillator;
quasi-hermetic muon veto; hermetic water shield

Current
Footprint:
2.5 x 3 m

Projected
Footprint:
About 1.2 x 1.2 m
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• The antineutrino interacts with a proton producing…

– A 1-7 MeV positron(+gammas)

– A few keV neutron

– mean time interval 28 µsec

• Both final state particles deposit energy in a scintillating detector over
10s or 100s of microsecond time intervals (depending on the medium)

• Both energy depositions and the time interval are measured

Detection of Antineutrinos
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How to Select 400 Antineutrino Events from 43 Million
Background Events

Step 1: Look for two scintillation flashes within about 28 microseconds

Step 2: Demand that the energy of each event in the pair be high
– > 2.45 MeV for the first event (positron-like”)
– > 3.5 MeV for the second event (neutron-like”)

Step 3: Demand that the event pair be far from a muon

28 µsec
Mean interevent time is 28 µsec

e+ n



LLNL

Prototype deployment –
San Onofre Nuclear Generating Station
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• The tendon gallery is tailor made for
antineutrino detection and nonintrusive
monitoring

– Rarely accessed for plant operation
– As close to reactor as you can get while being

outside containment
– Provides ~20 mwe overburden

• 3.4 GWt => 1021 ν / s
• In tendon gallery ~1017 ν / s per m2

• Around 3800 interactions expected per day

The Unit 2 Tendon Gallery
at the San Onofre Nuclear Generating Station

23.8 m

Reactor
Core

Reactor
Containment

Building

Tendon
Gallery
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Installation at SONGS
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Candidate Event Extraction

• “Cuts” are applied to extract correlated
events:

– energy cuts
>2.39 MeV prompt
>3.5 MeV delayed

– at least 100µs after a muon in the veto
detector

• Examine time between prompt and
delayed to pick out neutron captures on
Gd

• Event-by-event can not distinguish
antineutrinos from random coincidences
– perform statistical separation

Inter-event time (µs)
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Reactor Monitoring using only ν
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Current Relative Power Monitoring Precision

Weekly average
2.5% relative uncertainty
in thermal power estimate
(normalized to 30 day avg.)

Daily average
6.2% relative uncertainty
in thermal power estimate
(normalized to 30 day avg.)



LLNL

Our Positron Energy Spectrum Gives Another Clear
Indication That We Are Really Seeing Antineutrinos

Prompt Energy (MeV)
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Our Dataset
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A Burnup Measurement Using Antineutrinos
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Detector is stable to ~
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Current Status of our Detector and Data

• We can track power at the 2-3% level with a 1 week
integration time

• We can see an correlation (anti-correlation) between
fissile U (Pu) mass and antineutrino count rate,
consistent with predictions to about 2%

• We have operated stably and with little maintenance
for about 1.5 years

Deployment has been and remains essential for
demonstrating practical utility and improving the detector
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Conclusion

• Detectors invented for fundamental scientific research
have interesting applications in international nuclear
security

•Many of the detection issues that have to be solved for
field applications can benefit fundamental science

There are many more examples
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