Compton Telescopes for High Energy Astrophysics

Steve Boggs Department of Physics, SSL University of California, Berkeley

Cosmic High Energy Laboratories

Why MeV gamma-rays?

COMPTEL 1-30 MeV Source Catalog

Unique 0.2-10 MeV Science

- nuclear lines
- e-/e+ mass, annihilation
- peak emission: AGN, BHs, GRBs
- polarization

Sources (5 yr)	COMPTEL	ACT
Supernovae	1	100-200
AGN	15	200-500
Galactic	23	300-500
GRBs	31	1000-1500
Novae	0	25-50

the profound

(Schönfelder et al. 2000)

"...to explore the profound mysteries of life, space, time and the workings of the universe."

-NASA Space Science Enterprise Strategy 2003

BATSE (20-600 keV)

EGRET (20 MeV – 30 GeV)

Compton Telescopes: Then & Now

Performance of the Nuclear Compton Telescope A balloon-borne γ-ray spectrometer, polarimeter & imager

Berkeley, LBNL, NTHU, NCU, Santa Cruz, CESR, LLNL

Status:

- Prototype (2-GeD) flight 1 June 2005
- Calibrations still in progress
- 6-GeD LDB flight, December2007

Heart of NCT: Cross Strip 3-D GeDs

- 37x37 strips
- 2-mm pitch
- 15-mm thickness
- 81000 mm³ volume
- 1.6 mm³ localization
- ~1.9-keV noise resolution

3D GeD Design

	* 1 1	4 1 1			1 1		
eV ts	FWHM: 1.39 keV Peak: 1032 cnts	FWHM: 1.43 keV Peak: 1044 cnte	FWHM: 1.35 keV Peak: 1032 cnts	FWHM: 1.39 keV Peak: 1091 cnts	FWHM: 1.26 keV Peak: 1130 cnts	FWHM: 1.43 keV Peak: 1038 cnts	FWHM: 1.39 keV Peak: 1031 cnts
L eV ts	FWHM: 1.10 keV Peak: 982 cyts	FWHM: 1.24 keV Peak: 1077 cnts	FWHM: 1.31 keV Peak: 1107 cnts	FWHM: 1.34 keV Peak: 1097 cnts	FWHM: 1.33 keV Peak: 1133 cnts	FWHM: 1.32 keV Peak: 960 cnts	FWHM: 1.26 keV Peak: 1014 cnts
eV ts	FWHM: 1.08 keV Peok: 1016 ents	FWHM: 1.22 keV Peok: 1051 cnts	FWHM: 1.21 keV Peak: 1020 onts	FWHM: 1.17 keV Peok: 1087 ente	FWHM: 1.23 keV Peak: 1087 cnts	FWHM: 1.22 keV Peak: 1021 cnts	FWHM: 1.24 keV Peok: 1023 onte
 ∎V	Single-Pix	cel Spectra	(⁵⁶ Co)	FWHM: 1.16 keV Peak: 1071 cnts	FWHM: 1.13 keV Peak: 1152 cnts	FWHM: 1.12 keV Peak: 1061 cnts	FWHM: 1.24 keV Peak: 1026 cnts
eV ts	• excellent • plus full FWHM: 1.31 keV Peak: 1044 cnts	t GeD Spe 3-D positi FWHM: 1.34 keV Peak: 1037 cnts	Ctroscopy oning FWHM: 1.37 keV Peak: 1044 cnts	FWHM: 1.41 keV Peak: 1070 cnts	FWHM: 1.45 keV Peak: 1173 cnts	FWHM: 1.42 keV Peak: 978 cnts	FWHM: 1.45 keV Peak: 994 cnts
.l.							

Charge Sharing Between Strips

• # shared events, and charge loss proportional to gap size

- charge loss uniform across detector
- minimized in flight detector design
- correctable

(Coburn et al., IEEE, 2001.)

Compton Imaging ⁶⁰Co (1.173 MeV)

• linear depth calibration (detailed calibration nearly complete)

linear spectral calibration (detailed calibration nearly complete)

• angular resolution, FoV analysis proceeding

Compton circle projection

Detector Electronics

Performance:

- 4 µs shapers, ~1.9 keV FWHM noise resolution, 10 keV threshold
- 10-ns timing, 0.4-mm FWHM depth for interactions >40 keV

Current near-term goals:

- drop preamp power by $5 \times$ to 24 mW/chn
- develop ASIC-compatible design for analog readout (currently for low-cost balloon)

Preamplifiers (40/box)

Signal Cabling

NCT Gondola

- LDB compatible (w/ power upgrades...)
- fully automated control
- azimuthal pointing implemented
- battery powered
- 20+ days LN2
- ground telemetry + onboard data storage
- magnetometer aspect & pointing

Upgrades:

- solar power
- differential GPS

NCT Prototype Flight Goals

- qualify NCT for LDBF from Alice Springs, Australia in December 2007
- measure BG, data rates, telelmetry requirements
- verify sensitivity of instrument
- observe Crab Nebula/Pulsar, & A0535+262

Flat Fields

(obtained at float)

Background Spectra

Recovery

Minimal, mostly cosmetic damage To the Gondola

Instrument and all electronics Currently working perfectly in the Laboratory

NCT Prototype Flight Status

- detectors and their electronics worked "perfectly"
- pointing system failed, aspect OK
- all systems survived termination and recovery
- qualified for LDB flight
- detailed analysis in progress

NCT Future

- add 4 detectors + electronics
- repair gondola frame
- upgrade to a solar power
- revisit pointing system
- fly from Australia December 2007

Advanced Compton Telescope (ACT):

Type Ia Supernovae Cosmic Yardsticks, Alchemists

Goal: study ⁵⁶Ni & ⁵⁶Co emission from the core of Type Ia supernovae.

1. Standard Candles -- characterize the ⁵⁶Ni production, relation to optical

- 2. Explosion Physics -- uniquely distinguish explosion physics
- 3. SNe Ia Rate, Local & Cosmic -- direct rates unbiased by extinction

We define the science requirements in terms of the following objective:

ACT must be able to strongly distinguish typical deflagration models from delayed detonation models, even if the supernovae distances are unknown. Leading to instrumental requirements:

➢ broad (3%) line sensitivity at 847 keV: ~7×10⁻7 ph/cm²/s

- → spectral resolution: $\Delta E/E < 1\%$
- ➤ wide field of view: 25% sky

....these lead to 40-50 detections/year (5 @ 15σ)!

Nuclear Line Sensitivity

Primary science requirement: systematic study of SNIa spectra, lightcurves to uniquely determine the explosion mechanism, ⁵⁶Co (0.847 MeV) abundances.

Standard Candle

characterize ⁵⁶Ni production

Requirements: measurement of ${}^{56}Ni$ production in >100 SNe at >5 σ levels.

Explosion Physics

flame propagation, dynamics

Requirements: high sensitivity (>15 σ) lightcurves and high-resolution spectra ($\Delta E/E < 1\%$) of several SNe Ia events of each subclass over the primary 5-year survey.

History of nucleosynthesis in our Galaxy

Nuclear Radioactive Emission

✓ resolve ⁶⁰Fe, ²⁶Al, e⁺ into hundreds of regions, supernova remnants
 ✓ identify recent galactic SNe: ⁴⁴Ti
 ✓ novae: ²²Na, e⁺

 \checkmark solar flares and quiescent emission

(Oberlack et al. 1996)

Exotic physics at our Galaxy's core?

Electron-Positron Annihilation

✓ SN Ia, novae, black holes: less likely...
✓ MeV dark matter annihilation/decay?
✓ ACT will provide detailed morphology, spectra of the line & underlying continuum

(Knoedlseder et al., 2005)

ACT Enabling Technologies

The ACT Vision Mission study identified the most promising detectors and highest priority technology developments.

Highest recommendations:

- low-power readouts
- Ge, Si strip detectors

Ge Semiconductor

Property	Ge Strip	Si Strip	Liquid Xe	CZT Strip	Xe µWell
$\Delta E/E (1 \text{ MeV})$	0.2-1%	0.2-1%	3%	1%	1.7%
Spatial Resol.	<1-mm ³	<1-mm ³	<1-mm ³	<1-mm ³	0.2-mm ³
Z density	32 5.3 g/cm ³	14 2.3 g/cm ³	54 3.0 g/cm ³	48 8.3 g/cm ³	54 (3 atm) 0.02 g/cm ³
Volume (achvd.)	130 cm ³	60 cm^3	3000 cm ³	4 cm^3	50 cm ³
Operating T	-190° C	-30° C	-100° C	10° C	20° C

ACT Mission Configuration

Laue Lens: Focusing γ -rays

ACT Science Overview

Where do the chemical building blocks of life, planets, stars originate? How do the chemical elements evolve? What powers supernovae explosions?

Resolved spectroscopy and flux of nuclear lines from the heart of supernovae

What is the physics at the edge of a black hole? How do matter & antimatter behave in extreme environments?

Spectroscopy, polarization, and timing of photons from black holes, neutron stars, and novae

(J. Wilms) When did the first stars form? Can gamma-ray bursts measure the geometry of the Universe?

Gamma-ray burst localization, spectroscopy, polarization and timing

