Development of Detectors for ALS

- Photoemission

- 2 GHz pulse counting linear detector (after c/plates)
- 10 years of development!
- Diffraction / tomography / imaging / optical microscopy.......
 - column parallel CCD (LDRD funded)
 - 30 micron pixels, 120 frames / sec, 16 bits

- Proposals

- LCLS: CP-CCD in a SAXS / WAXS configuration
- LCLS: direct detection CP-CCD
- BES: energy / time resolving x-ray pixel detector
 - reviewed and stalled for present!

-

1D pulse counting detector for Photoemission

1D pulse counting detector for Photoemission

1D pulse counting detector for PES: first results

Column Parallel CCDs

- Speed increased by N_{PORTS}
- N_H large enough to minimize the number of ADCs needed
- N_H small enough to ensure 120 Hz readout
- Only possible with high integration
 → Integrated Circuits
- Applications in x-ray, optical and electron detectors

Thick, deeply depleted, back illuminated CCDs and CMOS CCD readout used in SNAP

LBNL fully depleted back illuminated CCDs

- Custom CCD
- 2k x 4k 15 micron pixels
- 300 μm depletion

Development of Fully Depleted, Back-Illuminated Charge Coupled Devices

SNAP CCD Readout Chip (CRIC)

- 16-bit multi-slope front-end
 - 2 e⁻ noise at 100 kHz
- 13-bit pipelined ADC
 - INL < +/-1.5 LSB
 - DNL <+/-0.5 LSB
- 10 mW/channel
- Space qualified
- 4 channels/chip for SNAP
- 100s of channels for CP-CCDs

Double 2x2 array phosphor - fiber - CCD x-ray detector

Brandeis phosphor- 4:1 taper – CCD detector for PX

GdO₂S:Tb 13 mg/cm², 4:1 taper 8 keV

FWHM = 120 microns FW@10% = 260 microns FW@1% = 410 microns

Typical DQE as a function of intensity (4x4 binning)

$$DQE = \frac{\left(s/n\right)_{out}^{2}}{\left(s/n\right)_{in}^{2}}$$

$$DQE = \frac{S^{2} \left| MTF(f) \right|^{2}}{NPS(f,Q)} \frac{1}{Q}$$

Where you normally are for high resolution structure determination at the edge of the detector

Improving resolution and DQE using 1:1 fiber coupling

GdO₂S:Tb 10 mg/cm² 4 micron grains 8 keV

FWHM = 38 microns FW@1% = 147 microns

Structured phosphors reduce the psf tails

CsI:TI, 37 microns thick (very thick for 8 keV) 8 keV

FWHM = 40 microns FW@1% = 105 microns

Improve resolution using structured phosphors

JOURNAL OF APPLIED PHYSICS

VOLUME 96, NUMBER 9

1 NOVEMBER 2004

Physical mechanisms for anisotropic plasma etching of cesium iodide

Xiaoji Yang and Jeffrey A. Hopwood

Eliminate psf tails: use a cellular phosphor

45 micron square Si cells Oxidized / Rh coated

Csl:Tl filled cells

CsI:TI, 250 microns thick 30 keV

9 LP/mm resolution

Fast detectors need fast phosphors

- Gd₂O₂S:Pr 1%: intensity drops to 10⁻⁷ at LCLS rep rate

- phosphor developed by Applied Scintillator Technology, UK

Use of CP-CCDs in optimized geometries

- Protein crystallography
 - huge improvement in low signal / high spatial frequency DQE
 - enables many frames to be taken, eg. fine phi slicing
 - means better high resolution data and data on large unit cell (weak scattering) systems
- Tomography
 - match frame rate to acquisition rate: factor 100
- Microdiffraction
 - match frame rate to acquisition rate: factor 100
- SAXS
 - enable few msec time resolved studies
- Coherent x-ray diffractive imaging
 - allow hugely improved effective dynamic range
- Optical microscopy
 - improved dynamic range and enabling of faster dynamics studies
- Direct x-ray and electron detection at high rates, excellent spatial resolution
-and 101 other areas

Where are we now in detector work at ALS

This is what we are involved in now:

- CP-CCD funded by strategic LDRD
 - follow on funding from LCLS?
 - follow on funding from...?
- 1d electron detector
 - finished (almost)

This is a very short list!

- we need to expand the range of areas we are working in
 - need to identify key needs
 - need to identify funding
 - need to establish a significant ALS detector group

Swiss Light Source

- full scale x-ray pulse counting pixel detector for protein crystallography
- several linear and area pixel detectors for powder diffraction and other apps.
- advanced detectors are starting to give SLS a strategic advantage
 - gestation period for projects makes this lead very difficult to catch up

Diamond / RAL

- RAL are responsible for provision of advanced detectors for Diamond
- pixel, strip, CP-CCD etc

European Synchrotron Radiation Facility

- their new medium term plan focuses on detectors as the next target area
- -pixel detectors of all flavors

Solid State Pixel and Microstrip Detectors

PILATUS Module Typ II (readout electronics bended)

- Flexprint 6/2 from Dyconex
- Modules can be overlapped
- 80 x 35 mm² continuous sensitive area
- 2 x 8 readout chips
- Power consumption: 7V/1.5 A -> 10.5 W
- Fabrication of 21 Modules: Mai 03- Sept 03

The PILATUS 1M Detector

- Largest pixel detector array for SR
- 6 banks a 3 modules, 1120 x 967 pixels
- Area: 21 x 24 cm²
- 288 chips->~300x106 transistors
- Readout time: 6.7ms
- · Currently 2 frames/s
- · 2 frames/ s
- Active area: 85%
- Moderate count rates (<10kHz/pixel)

PILATUS 1M Detector at X06SA

Thaumatin crystal

Data Taking:

Data set: 120° Exp Time: 4s Integration: 1°

Beam energy: 11.9 keV Beam intensity: 13.5% D Sample-Det: 128 mm

Resolution: 1.4 Å

Analysis:

3 data sets merged full geometrical correction Processed with XDS

R_{obs}: 8.9% (overall) Completeness: 90% (98% up to 1.6 Å)

PAUL SCHERRER INSTITUT -

PILATUS II Chip

- UMC_25_MMC process; Radiation hard design
- $60 \times 97 \text{ pixels} = 5820 \text{ pixels}$
- Pixel size 172 x 172 um²
- 17.540 x 10.450 mm²
- Count rate: 1MHz/pixel
- 20 bit counter
- Counting timer circuit
- 6 bit DAC for threshold adjustment
- XY-adressable
- Analog output
- 100 MHz LVDS readout ($T_{ro} = 1.2 \text{ ms}$)
- Submitted 29.09.04
- Received 1.12.04

4*106 Transistors

RAL, 16/2/2005

CMOS (Monolithic) Active Pixel Sensor (MAPS)

(Re)-invented at the beginning of '90s: JPL, IMEC, ...

- Standard CMOS technology
- all-in-one detector-connectionreadout = Monolithic
- small size / greater integration
- low power consumption
- radiation resistance
- system-level cost
- Increased functionality
- increased speed (column- or pixel- parallel processing)
- > random access (Region-of-Interest ROI readout)

Fig. 2. (a) A typical CMOS sensor cross-section;

(b) Example of a cross-section after back-thinning.

Fig. 8. Four transistor pixel schematic.

Fig. 9. Block Diagram of 4k x 3k Sensor.

Fig. 10. (a) Image taken with 4k x 3k CMOS sensor;

A Large Area CMOS Monolithic Active Pixel Sensor for Extreme Ultra Violet Spectroscopy and Imaging

Mark Prydderch*^a, Nick Waltham^a, Quentin Morrissey^a, Marcus French^a, Renato Turchetta^a,

Peter Pool^b

^aRutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, UK, OX11 0QX;
^be2v Technologies, 106 Waterhouse Lane, Chelmsford, Essex, UK CM1 2QU.

Our first CPCCD - CPC1

Manufactured by e2V (UK)

- Two phase, pixel size 20 μm × 20 μm;
- 400 (V) × 750 (H) pixels;
- Two charge transport regions;
- Wire/bump bond connections to readout chip and external electronics.

1-stage source followers and direct connections on 20 µm pitch

Readout chip CPR1

Wire/bump bond pads

Wire/bump bond pads

Manufactured by IBM

ASIC for CPC1 readout

- Designed by the Microelectronics Group at RAL
- Size: 6 mm x 6.5 mm
- Voltage amplifiers for the 1-stage SF outputs
- Charge amplifiers for the direct outputs;
- 250 5-bit flash ADCs
- Everything on 20 μm pitch, 0.25 μm CMOS process
- Fully bump-bondable and partially wirebondable
- Scalable and designed to work at 50 MHz
- Extensively tested for 1 year

CPC1 bump-bonded to CPR1

- Bump-bonding done at VTT (solder bumps)
- High quality bumps, but with yield problems
- First time e2V CCDs have been bump-bonded

Bump-bonded CPC-1/CPR-1 in a test PCB

Bump bonds on CPC-1 under microscope

What areas of electronic detector research are important to ALS

Photoemission

- CP-CCD (evolution from present 2d system)
- 2d pixel detector (after c/plate; lots of signal!)

X-ray diffraction (Protein crystallography, small mol chem. crystallography...)

- CP-CCD (phosphor / taper); work on phosphors needed
- CP-CCD (direct detection: best point spread function; limited dynamic range)
- 2d hybrid pixel detector (direct detection, largest complexity)
 - time stamping and energy resolution crucial new features (for some expts)

Hard x-ray imaging

- tomography (single crystal [structured] scintillator / microscope objective); CP-CCD

Soft x-ray imaging

- cellular imaging (CP-CCD)

Electron imaging

- CP-CCD
- MAPS (also suitable for ARPES, without c/plate; electrons accelerated to 10 keV, detected in Si)

What technologies / skills do we need for this

Microelectronics

- CCD readout, MAPS, ASICs....

Detector elements

- phosphors, structured arrays, fiber couplers
- photodiode arrays, eg. Si, GaAs...
- direct charge injection, eg. a-Se, HARP...

Fully depleted thick CCDs

Backend processing

- FPGA, DSP....

System integration

- engineering of complete systems including data processing

Detector testing

- testing in the lab and on the beamline
- absolute quantification of detector performance

R&D

- we need to work on exploratory technologies as well as defined projects

Finding funding

- very time consuming, significant opportunities

Thanks to.....

Provision of info / ppts:

Protein crystallography

- Paul Adams, James Holton, Corie Ralston, Paul Adams, Alastair MacDowell

ALS Accelerator

- David Robin

History of SR

- Herman Winnick

Photoemission

Eli Rotenberg

Detectors

Peter Denes, Chris Bebek, Hendrik von der Lippe, Chuck Fadley,

Soft x-ray tomography Carolyn Larabell, Mark LeGros

and especially to Peter Denes for helping to get an ALS detector program off the ground